Definitions | s = t, ES, Type, , x:A B(x), Top, x:A B(x), b, left + right, E, , Void, x:A.B(x), {x:A| B(x)} , P  Q, x:A. B(x), E(X), X Y = 0, False, A, P  Q, P & Q, P   Q, type List, f(x)?z, strong-subtype(A;B), a:A fp B(a), S T, e  X, P Q, let x,y = A in B(x;y), t.1, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , EqDecider(T), Unit, IdLnk, Id, EOrderAxioms(E; pred?; info), f(a), EState(T), Knd,  x. t(x),  x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, constant_function(f;A;B), loc(e), kind(e), (x l), x dom(f), True, T, Dec(P), x:A. B(x), b | a, a ~ b, a b, a <p b, a < b, A c B, x f y, x L. P(x), ( x L.P(x)), y is f*(x), r < s, q-rel(r;x), Outcome, l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, loc(e), vartype(i;x), state@i, State(ds), State(ds), g glues Ia:Qa  f Ib:Rb, <a, b>, Q ==f== P, f is Q-R-pre-preserving on P, Q  = f== P, {T}, {I}, R|P, R1 R2, suptype(S; T), bool-decider(b), x.A(x), [P? f : g], [f?g], AbsInterface(A), t T, X(e), P1 P2, , P1  P2, R1  R2, tt, ff, R1   R2, if p:P then A(p) else B fi , SQType(T), s ~ t, inr x , inl x ,  b |